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Top-down Attention
Selection is Fine Grained

VIDHYA NAVALPAKKAM & LAURENT ITTI
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Importance of top-down signals

In natural world, when predators are camouflaged and, hence, visually
nonsalient, the prey’s survival depends on whether top-down can guide
attention by selecting the fine-grained target feature
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a. coarse top-down guidance b. fine top-down guidance
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An Integrated Model of
Top-down and Bottom-up
Attention for Optimizing
Detection Speed

VIDHYA NAVALPAKKAM & LAURENT ITTI
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Background

Use attention to accelerate detection speed

Need to integrate top-down and bottom-up attentional influences

Need to consider knowledge of the target and distracting
background




Goal

Get the saliency map of target




Approach

Propose a new model that combines both bottom-up as well as top-down
attentional influences

The model first computes the naive, bottom-up salience of every scene location
for different local visual features (e.g., different colors, orientations and
intensities) at multiple spatial scales

Next, the top-down component uses learnt statistical knowledge of the local
features of the target and distracting clutter, to optimize the relative weights of
the bottom-up maps such that the overall salience of the target is maximized
relative to the surrounding clutter

Such optimization renders the target more salient than the distractors, thereby
maximizing target detection speed
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Saliency model by [tti

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis.
PAMI 1998.
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Analysis in several feature dimensions

Input visual scene
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Relevant objective function to be
optimized
SNR

o Detection speed depends on the ratio between the strength of signal

detecting the target(i.e., target salience), over that detecting the distracting
background (i.e., distractor salience)

> The relevant goal for maximizing object detection speed is to maximize signal-
to-noise ratio SNR

> ST(A)be a function of the input search arrayA, which is a function of the visual
features of the target ©|T(sampled from probability density functions P(©|T)).
A is also a function of the relative locations or spatial configuration of the
target and distractors (C). Since C and ©|T are random variables, so is ST(A).
ST(A)is also influenced by noise in neural response, n. And the same for the
salience of the distractors, SD(A)




Relevant objective function to be
optimized
SNR: the ratio of expected salience of the target over distractors

SNR = E@|T,C,H[ST (A)]/E@m,c,n[SD(A)]
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The expected salience of the target and
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Analysis in several feature dimensions
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Maximizing SNR to obtain the optimal
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Maximizing SNR to obtain the optimal
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Input visual scene
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TODO, the naive, bottom-up model does not know T or D
(hence, uses default top-down weights of 1)

T1DO0 combines bottom-up salience with knowledge of T only.
Hence, it computes top-down weights based only on target
salience sijT, while ignoring D by considering sijD to be some

constant.

TOD1 combines bottom-up salience with knowledge of D only
T1D1 combines bottom-up salience and top-down knowledge

of both T and D.
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Training and test data

For each search condition with the synthetic stimuli, the model learn target
belief in salience (SbT, SbD) from 50 training images, computes the mean
salience of the target and distractors (Eor.c.4[S%(A4)), Eop.c.n[SH(A))

In each of the 100 test image images, the target and distractors can occur
randomly at any cell within the 9x9 grid, and their location within the cells is
further jittered by upto 10 pixels (thereby changing C). Noise in stimulus
features is also added, in the form of jitter in orientation (upto 5¢), and jitter in
color values (upto 20 in R,G and B), thereby changing ©|T,©|D. Internal neural
noise n is added by the saliency model.




Training and test data




